NADPH oxidase p22phox gene variants are associated with systemic oxidative stress biomarker responses to exercise training.

نویسندگان

  • Joon-Young Park
  • Robert E Ferrell
  • Jung-Jun Park
  • James M Hagberg
  • Dana A Phares
  • Jennifer M Jones
  • Michael D Brown
چکیده

Systemic oxidative stress plays a role in many degenerative diseases. Although regular physical activity has been known as the most effective nonpharmacological intervention to alleviate the oxidative stress, the beneficial effect varies between individuals. We investigated whether NADPH oxidase p22phox gene C242T and A640G polymorphisms are associated with systemic oxidative stress level response to exercise training (ExTr). Fifty-nine sedentary middle-aged to older Caucasians with relatively high cardiovascular disease risk factors underwent a 6-mo standardized ExTr program. Body mass index, plasma lipoprotein-lipid profiles, cardiovascular fitness, and plasma thiobarbituric acid reactive substances (TBARS) were measured before and after ExTr. Demographic and initial levels of cardiovascular disease risk factors were similar among genotype groups for both polymorphisms. Overall, TBARS was decreased by 16% with ExTr in the entire group (P < 0.001). There was no significant difference in TBARS changes with ExTr among the C242T genotype groups. However, A allele carriers showed greater reduction in TBARS than noncarriers at the A640G locus (P = 0.05). There was a significant interaction (P = 0.05) between ExTr and A640G polymorphism in TBARS changes with ExTr. This interaction remained after accounting for age and baseline TBARS level. Furthermore, diplotype analysis showed that TBARS was decreased to a greater extent in the C242/A640 haplotype carriers compared with the noncarriers (P < 0.05). We found that p22phox polymorphisms, especially A640G, were associated with differential changes in systemic oxidative stress with aerobic exercise training.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

hypertension-associated vascular damage and is mediated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation. The C242T polymorphism at the p22PHOX gene affects binding of p22PHOX to heme, leading to variants

Vascular oxidative stress is an important factor in hypertension-associated vascular damage and is mediated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation. The C242T polymorphism at the p22PHOX gene affects binding of p22PHOX to heme, leading to variants of NADPH oxidase that produce different levels of reactive oxygen species (ROS). Specific variations in ROS are ass...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Aldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells

Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...

متن کامل

Priming of neutrophil oxidative burst in diabetes requires preassembly of the NADPH oxidase.

Hyperglycemia associated with diabetes mellitus results in the priming of neutrophils leading to oxidative stress that is, in part, responsible for diabetic complications. p47phox, a NADPH oxidase cytosolic subunit, is a key protein in the assembly of the NADPH oxidase leading to superoxide generation. Little is known about the priming mechanism of oxidative pathways in neutrophils of people wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 99 5  شماره 

صفحات  -

تاریخ انتشار 2005